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Abstract. We propose a profile based code selection scheme for an AOT
Java compiler. This scheme relies on a model that accurately predicts the
speedup of a given selection. The model takes into account the cross-call
patterns of the application. This approach allows us to reduce the size
of compiled code significantly for several benchmarks.

1 Introduction

Java has been recognized as an attractive language and platform to program
embedded systems. There are several reasons for this. Embedded systems use
a large variety of processors. The portability of Java is very appealing in this
context. Embedded systems have generally a limited memory size. Because Java
has been designed to ease the communication of programs through the internet,
one of it’s design goals is the small size of executables (which is achieved by
the use of a stack based bytecode). This feature is also beneficial to embedded
systems.

However, in order to limit energy consumption, embedded systems are not
built around high performance processors. So neither can they accommodate
the low performance of purely interpreted Java nor the overhead of a JIT com-
piler [6,10]. One solution to the performance problem is the use of Ahead of
Time compilers (AOT compilers)[11-13]. Because the compilation is done offline
with such compilers, there is no runtime overhead imposed by compilation.

There still is a problem with AOT compilers: compilation increases the size
of code. To address this problem, we have developed the TurboJ[13] compiler
that partially compiles an application. The runtime, which is based on a Java
Virtual Machine (JVM), allows a mixed execution mode where both compiled
code and interpreted code are executed.

The TurboJ compiler allows code to be selected for compilation at the method
level. The compiler is fed with the entry point of an application (from which it
builds the list of classes that the application uses) and a list of methods that
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it must compile. Any other method remains interpreted. This feature is very
important and useful to solve the problem of code-size increase. However, in
practice, it is not an easy task to select the methods to be compiled. In fact, it is
not easy at all to figure out which methods are the most interesting to compile
in order to get the best performance without expanding too much the size of the
code.

The general problem that we deal with is as follows: given a memory size
limit [ what is the set of methods that when compiled produces the most effi-
cient program whose size is lower than [? This corresponds to an optimization of
programs for performance. The problem can also be seen the other way round:
given a speedup s what is the method set that, when compiled produces the
smallest program with the expected performance. This corresponds to an opti-
mization of programs for size.

A first answer is to use a profiler and select the set of methods where the
program spends most of its time3. This approach may give good results for some
applications; however, experience proved that there are programs for which the
result of such an approach is extremely poor: we encountered programs that
were slower than their interpreted version.

Experience also shows that an important factor of performance degradation is
the context-switching done when calling compiled code from interpreted code or
when calling interpreted code from compiled code(cross-calls). In this paper we
present a model of performance of compiled Java programs that take the impact
of cross-calls into account. An algorithm to select compiled methods that uses
this model to guide its choice has been implemented in the tool TurbolJ.

Section 2 is devoted to the description of TurboJ, our AOT compiler and to
the description of the profilers we developed. In Section 2.2 we describe a first,
naive, approach for partitioning programs and show its limits. In Section 3 we
propose a model of program performance that takes more elements into account
to circumvent the limitations of the first approach. In Section 4 we present a
method selection algorithm that exploits the model presented in the previous
section. We discuss related work in Section 5. Then we conclude and discuss
possible enhancements of our work in Section 6

2 Existing framework

2.1 The TurboJ Compiler and Profiler

TurbolJ[13] is a bytecode to native code compiler. It is an AOT compiler that
supports mixed-mode execution (compiled/interpreted) of Java programs. Code
can be selected for compilation at the method level. Mixed-mode execution is
achieved by relying on a VM to execute interpreted code. The VM also serves as
a runtime environment for the compiled code. Beside the possibility of mixed-
mode execution, the advantage of this approach is that it makes it possible to
cope with the full range of Java features such as reflection or dynamic loading.

3 Tt is a well known rule of thumb that most programs spend 80% of the time in 20%
of its code.



TurboJ is used along with a profiler that allows the extraction of information
about Java programs that is useful to partition applications (e.g., number of
bytecodes executed by a method, frequency of the call of a method at a call
site, etc.). This profiler works by instrumenting the bytecode so that it is fully
portable: it can be used with any VM and on any platform. Another advantage
of our profiler is that the results reported are precise (no sampling is done) and
are not influenced by the profiling because we count events instead of measuring
time (i.e., no probe effect).

2.2 A naive model of performance of programs

The best possible selection is the set of methods that have the best speedup up
to a given size of bytecode. Compiling in isolation each method of a program and
measure the speedup it provides would not be tractable for obvious reasons. In-
stead we use a model of the speedup that allows to predict the speedup provided
by a method without actually compiling it and running the program. It only
requires an interpreted run of the instrumented program to extract execution
profiles.

The first model that we tried is very simple: we consider a constant acceler-
ation factor among all bytecodes. Under this model, the best selection of size [
is the selection that maximizes the number of executed bytecodes.

We did not consider useful in practice to use an optimization package to solve
this problem. Instead, we use a very simple heuristic: we present the methods
sorted by decreasing number of executed bytecodes and select the first ones up
to a given static size.

Our selection tool has a graphical interface that presents the results of the
instrumented runs. Results are presented with sorted methods on the x-axis and
their respective number of executed bytecodes on the y-axis.

2.3 Experiments (limitations of the approach)

Under the hypothesis that most of the execution time is spent in a small portion
of the program, the speedup curves that result from the application of the above
selection strategy should have a high slope at the beginning and become quickly
almost horizontal. The initial high slope would also mean that, in most cases,
the first sorted methods provide a good ratio of executed bytecode over size.

However, in practice the model of performance does not always predict the
speedup of the partially compiled applications. In order to assess the problem, we
ran experiments on several real-world applications. For lack of space we present
here two of the most significant ones:

— compress, from the SpecJvm98 benchmark suite [5] and
— xalan, the Apache XSL processor [8].

Compress is a computation kernel code composed of 41 methods which is rep-
resentative of code that can be found in embedded systems. Xalan is a large
object-oriented application comprising 2372 methods.



Our model asserts that the more bytecodes are compiled (whatever bytecode
they are) the faster the program is. To assess this, our experiment consists in
the observation of the speedup progression in parallel with the progression of
the number of compiled bytecodes. We generated, for each of our benchmarks, a
suite of growing selections of methods - the methods being sorted by decreasing
number of executed bytecodes. For each of these selections, we compiled the
selected methods and ran the program. The reported results are the speedups
of each of these runs as compared to the fully interpreted program. We ran our
tests on a Intel 730MHz-Pentium III running Linux.
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Fig. 1. Progression of the Speedup with the number of Compiled Bytecodes



The results of our experiments (see Fig. 1) showed that the model is far
from being accurate. The speedup obtained in the case of Compress for up to
700 compiled bytecodes has an inverse progression as compared to the model.
For Xalan, the speedup follows on average the model. However, it makes a lot
of local oscillations that are not negligible. Moreover, there is a regression of
performance when compiling up to 3000 bytecodes.

These results are not acceptable for mainly two reasons. First, the selection
procedure would lead to selecting a set of methods which will slow down the ap-
plication when compiled (e.g., Compress). Second, it shows unpredictable oscil-
lations, that is, selecting one more method can dramatically reduce the speedup
(e.g., Xalan). The major drawback of this approach is that it does not provide
any convenient way to detect such problems. Therefore, it is unable to faithfully
predict the speedup of a selection after compilation.

This raises some questions. First, how can we explain that compiling some
bytecodes slows down the application? Second, are there bytecodes that provide
more speedup than others when compiled? Or are there bytecodes that slow
down the application when compiled until a small number of other bytecodes
are compiled? In the next section we propose a model that solves the problems
we observed on the benchmarks.

3 Taking calls/context-switching into account

Our investigations showed that cross-calls (calls from interpreted code to com-
piled code or from compiled code to interpreted code) are responsible for the slow
down of applications by the compilation. Cross-calls are done through stubs that
convert the argument passing convention and install exception handlers. These
stubs imply costly (yet necessary) computations that are not done in case of
direct calls. We made several experiments to assess the relative cost of the calls
and its impact on the speedup provided by a selection.

3.1 The Cost and Impact of Cross-calls

We ran micro-benchmarks that allowed us to isolate the speedup gained for each
of the four kinds of call in various situations. The results of these measurements
are summarized in the Table 1.

lSpeedup “Int/Int [Int/Compl[Compl/Int[Compl/Compl‘
invokevirtual 1 0.3 0.6 5
invokeinterface 1 0.5 0.6 2.5
invokestatic 1 04 0.6 5
invokespecial 1 0.4 0.5 5

Table 1. Speedups for the 4 kinds of calls.



There is no relation between the lines of the table. For each line, the interpreted-
interpreted cost is taken as reference. The other figures are the speedup of the
call as compared to the performance of the interpreted-interpreted call. It is
clear from these figures that the cross-calls can actually slow down an appli-
cation. For instance an interpreted invokevirtual is 70% slower when it calls
compiled code than when it calls interpreted code.

To further convince the reader that the cross-calls are responsible for the
slow down, we ran experiments on our 2 benchmarks. The experiment consists
in measuring the number of cross-calls executed for each selection. We report
(see Fig. 2), for each selection, its execution time and the amount of cross-calls
in this number of compiled-bytecode executed. We observe that the amount of
cross-calls and the execution time have related progressions. In particular, peaks
of cross-calls coincide with peaks of execution time.
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3.2 A new model of application performance

From the experiments above, it is clear that the amount of cross-calls needs
to be small enough for the compilation to provide some speedup. Moreover,
compilation not only does not provide the same speedup for all the bytecodes
but it may provide an anti-speedup when calls become cross-calls. This suggests
that the speedup is inversely proportional to the number of cross-calls.

Given a set of methods M and a sub-set s of these methods, we note Ny the
number of bytecodes executed by s on a run and Cy the number of cross-calls
executed during a run when s is compiled. The model we propose to use is then

R, =
Cs
The intended use of this model is not to get an absolute measure of the speedup
obtained when compiling a selection. Instead, we simply use it to compare se-
lections so as to be able to select the best one with respect to our model.

3.3 Experiments

To assess our new model, we re-ran our benchmarks and for each selection we
computed the value of Ry and measured the corresponding speedup. Results of
these measurements are reported in Fig. 3. What we observe on these curves is
that the model follows most of the progression of the speedup. That is most of
the peaks of the speedup curves coincide with peaks of the model curve. This is
particularly the case for Compress where the model and the speedup progression
are very similar.

Thus, the model we propose is much better than the naive one that is com-
monly used in dynamic compilation systems. Moreover, this model has several
important qualities:

— it is simple so that its evaluation can be done at low cost;

— its evaluation can be done in an incremental fashion as the selection evolves,
there is no need to re-compute the model for the whole selection when a
method is added;

— it does not contain any constant related to the platform.

The last point is quite important for us. In fact, our profilers instrument the
bytecode so as to be independent of the JVM. With this model, the whole chain
(instrumentation, profiling and method selection) remains independent of the
platform.

4 A partitioning heuristics

4.1 A Greedy Algorithm to Select Methods

Having a model, we need an algorithm that finds good method selections using
the model. While the naive model was linear, the model with cross-calls is not.
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Adding a method influences both Ny and Cs. Furthermore, it is not monotone
with respect to Ny: adding a method to the selection can turn direct calls to
cross-calls and so lower the model value. We propose a heuristic based on a
greedy algorithm to find solutions.

Starting from an initial selection, our algorithm enhances the value of R, by
adding a method to the selection at each step. The algorithm selects the method
that, if selected maximizes the increase of R,;. At each step, the search for a
method is restricted to the set of methods that have an incident edge with some
selected method. The values Ny and C are maintained at each step so that the
value of Ry can be evaluated in an incremental fashion without looking at the
entire selection.
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4.2 Results

One first result is that our heuristic finds successive selections with a growing
ratio Rs. We represent the evolution of the model and the corresponding speedup
for our two examples Fig. 4. These are two representative results out of several
other experiments. The figure shows that these curves (the evolution of the
model following the greedy algorithm) are useful tools in the search for a good
selection. In the case of Compress, the progression of the ratio and of the real
speedup are similar in that both are only growing.

Our model and heuristic provide a reliable tool to explore the tradeoff be-
tween application size and execution performance. The model does not reflect
some oscillations in the case of Xalan, but the choice that the model leads to
turns out to be the correct one with respect to the speedup curve. More gener-
ally, we observed in all our experiments (including some that are not reported
in this paper) that when the model is growing then the real speedup is always
growing, but when the value of the model is stable, there may be some oscilla-
tions of the real speedup. This makes our tool reliable because there is no reason
to compile more methods if the model reports that they will not provide any
additional speedup.

To compare with the naive approach, we report in Table 2 the relative static
quantities of bytecode that need to be compiled in both approaches to reach a
given speedup. The figures for Compress and Xalan are drawn from the curve
represented Fig. 4. We take, as a reference, the best solution found with the
naive approach. Speedups are given as a percentage of the reference speedup
(i.e., 100% of speedup corresponds to the maximum speedup achieved with the
naive method). Static quantities of bytecodes are reported as a percentage of
the reference static quantity of bytecodes (which corresponds to the reference
speedup).

application|% Speedup|% Compiled bytecode
First method[ Greedy
Xalan 89 35.6 4.0
97 98.4 5.2
100 100 7.8
108 24.6
Compress 27 61.3 18.1
39 62.4 32.1
56 67.5 50.8
82 69.8 66.1

Table 2. Comparison of the results of the naive approach and the greedy algorithm

For Xalan, only 4% of the reference quantity of bytecode is selected to be
compiled by the greedy algorithm to get 89% of the reference speedup. As com-
pared to the 35% of bytecodes selected with the first approach to get the same



speedup this is an improvement of 88%. To reach the reference speedup, only
7.8% of the reference quantity of bytecode needs to be compiled which yields
92% of improvement. Results are a bit less spectacular for Compress but we still
observe that our new model significantly reduces the total amount of bytecode
to be compiled.

The figures of Table 2 also show that we can improve the result both in
terms of size and of performance: for Xalan, by compiling 24.6% of the bytecode
needed to get 100% of the reference speedup we actually obtain 108% of this
speedup. This means that we go beyond the best speedup observed with the naive
approach while (at the same time) reducing by 75.4% the size of the compiled
bytecode.

5 Related work

Profiling information has been used for a long time to guide optimizers in static
compilers. One trend of work [3, 4] uses profiling information to detect frequently
executed scenarios and transform the program so as to be able to optimize the
frequently executed code. More recently, profiling information has been used
in dynamic optimization systems. Some work only uses it to detect so-called
hot spots [6,10] while others uses it to select the optimizations applied to the
code [1, 2]

There are many AOT compilers that mix interpreted and compiled Java code.
Harissa [11] integrates an interpreter in its runtime environment to implement
dynamic loading of code. TowerJ [12] also integrates an interpreter in its runtime
environment and allows selective compilation but there is no mention of an
assistance tool to partition applications. The company OTI developed a JVM
called J9 and an AOT compiler that generates code that relies on the JVM
as a runtime environment, much like TurboJ. They also have the possibility to
selectively compile methods and they use profiling information to select methods
that are worth compiling [7]. Their profiling approach is based on the Java
interface for profiling [9] so that they implement a sampling profiler that records
execution time and call frequency of each method. They select methods for
compilation on the basis of their respective execution time. This is close to our
naive approach. However, we see some limitations to this approach because they
have no convenient way of identifying the kind of bytecodes executed in the
methods that run for long times. As a consequence they cannot figure out the
call patterns. Besides, our profiling method is less biased because we count events
instead of measuring time (no probe effect). Moreover, the OTI approach is not
portable since it requires writing JVMPI native code.

6 Conclusion

We propose a profile based code selection scheme for an AOT compiler that
takes into account cross-call patterns of an application. We have shown that
this approach allowed us to reduce the size of the compiled code significantly



as compared to the algorithm that relies on the relative quantities of bytecode
executed.

The greedy heuristic that we propose needs to be inseminated with an initial
selection. On the one hand, a rich initial selection will offer the greedy algorithm
more possibilities of selection at each step and, therefore, lead to better selec-
tions. On the other hand, a too large initial selection may contain a method
that cannot be optimized by the greedy algorithm and compromise the results.
Currently, we use the list of methods sorted by growing number of executed
bytecode to build the initial selection. This strategy turned out to provide good
results. Besides, if the prefixes of the list do not contain interesting an initial
selection, the programmer can select methods individually through a graphical
user interface that represents the classes of the program as well as the call graph.

One of the key features of our heuristic is that it is incremental and, therefore,
fast. The greedy algorithm considers a sub-set of the methods of a program that
depends on the size of the selection, not on the size of the program. Because the
heuristic is fast, the programmer gets quickly feedback in the form of the curve
of the evolution of the model. This allows testing several solutions for the initial
selection in a short amount of time.

Due to the expected large size of the call graph (e.g., 2372 methods and
5008 edges in the case of Xalan), we do not envision the use of global and exact
optimization algorithms. The greedy algorithm allows us to propose a suite of
solutions that are built incrementally and that can be used by the programmer
to explore the size/performance tradeoff. It is unclear whether a global approach
would provide the same possibilities.

Our results are promising but can be enhanced in several ways.

One direction consists in taking recursion into account. Recursion corre-
sponds to cycles in the call graph. A possible and simple approach would be
to reduce the call graph to its strongly connected components and consider
strongly connected components as compilation units in place of methods.

In our greedy algorithm, the choice of a method is restricted, at each step,
to the set of methods that have an incident edge to a selected method. This
allows us to reduce the size of the search space at each step. It would be actually
possible to consider all the methods. A method that has no incident edge with a
selected method, if selected, will only introduce cross-calls so that it is possible to
evaluate the increase of the value of R, for each of such methods independently
of the selection and of other methods: it is simply the ratio of its quantity of
executed bytecode and of the number of calls it makes. So if we maintain a
list of non-candidate methods sorted by their local ratio, the head of the list
(the method that has the maximum local ratio) is the best choice among all
the non-candidate methods. This allows to open the choice of a candidate to all
the methods at each step while increasing the size of the search space by only
one. This approach would eventually lead to better selections where the ratio
becomes flat (Fig. 4).

Finally, beside calls, we consider that all other bytecodes are accelerated in
the same way. This is actually not true since, for instance, runtime type checks



are not accelerated. We believe that we can still refine our model to take this
into account.
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