
Bran Selic
Rational Software Canada

bselic@rational.com

Physical Programming:
Beyond Mere Logic

2

In Memoriam

♦ “I see no meaningful difference between programming
methodology and mathematical methodology” (EWD 1209)

♦ “[The interrupt] was a great invention, but also a Pandora’s Box.
.…essentially, for the sake of efficiency, concurrency [became]
visible… and then, all hell broke loose” (EWD 1303)

Edsger Wybe Dijkstra (1930 – 2002)

3

Two Opinions
“Because [programs] are put together in the context of a set of
information requirements, they observe no natural limits other
than those imposed by those requirements. Unlike the world of
engineering, there are no immutable laws to violate.”

- Wei-Lung Wang
Comm. of the ACM (45, 5)

May 2002

“All machinery is derived from nature, and is founded on the
teaching and instruction of the revolution of the firmament.”

- Vitruvius
On Architecture, Book X

1st Century BC

4

The Classical Engineering Design Problem

Construction
Materials

160,000 kg

Anticipated
Load

Functional
Requirements

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

Ξ = Ξ = Ξ = Ξ = cos (η + π/2)(η + π/2)(η + π/2)(η + π/2)
+ ξ∗5+ ξ∗5+ ξ∗5+ ξ∗5

Design

5

What is Software Made of?

6

Processing Site Processing Site

observer
on offoffon

State?

“on”

“on”

Exhibit A: Transmission Delay Effects
♦ Possibility of out of date status information

7

clientA notifier1 notifier2 clientB

time

on
on

off

off

Exhibit B: Relativistic Effects
♦ Relativistic effects:

� different observers see different event orderings (due to
different and variable transmission delays)

8

Processing Site

Communications Medium

Processing Site

Distribution Transparency Mechanisms
♦ Platform layers that mask out failures from the application

� e.g., reliable RPC services, relocation transparency,…

client server

Reliable
Comm Service

Reliable
Comm Service

9

Impossibility Result No.1

It is not possible to guarantee that agreement
can be reached in finite time over an
asynchronous communication medium, if the
medium is lossy or one of the distributed sites
can fail

� Fischer, M., N. Lynch, and M. Paterson,
“Impossibility of Distributed Consensus with One
Faulty Process” Journal of the ACM, (32, 2) April
1985.

10

Impossibility Result No.2

Even when communication is fully reliable, it is
not possible to guarantee common knowledge if
communication delays are unbounded

� Halpern, J.Y, and Moses, Y., “Knowledge and
common knowledge in a distributed environment”
Journal of the ACM, (37, 3) 1990.

11

Layering Does Not Always Help

♦ All forms of distribution transparency mechanisms require
distributed agreement!
� Transparency can only be approximated

� The more transparency is desired the higher the cost (time,
resources, complexity)

♦ The end-to-end argument [Saltzer et al.]:
⇒the overhead of introducing transparency mechanisms may

not always be justified by the benefits obtained

12

Platform

What Software is Made of

♦ Platform = the complete technological base (SW and HW) required to
execute an application

♦ The platform is the “construction material” of software, conveying its physical
characteristics (speed, capacity, etc.) directly to the application

Software Application

Operating System

Computing Hardware

13

Platforms and Applications
♦ What effect should a computing platform have on an

application?
♦ The answer: as little as possible

…but, no less!
♦ Platform-independent design (MDA?)

� Separation of concerns (simplifies design)
yes…but separation of concerns is no excuse for negligence

� Portability
yes…but how much?

♦ A sound design principle that is far too often
misinterpreted as “software that can run anywhere”

14

If Transparency is an Idealization…
♦ Facts to ponder:

� In the Internet Age, most interesting applications will be distributed

� As our dependence on computers increases, the physical characteristics
of our software (response time, availability) will become much of a
concern

♦ Traditional Programming = Logic

♦ Physical Programming = Logic + Physics
� Like more traditional engineers, software designers must take into

account the construction material out of which the logic is spun

� Dealing with finite resources, finite delays, finite reliability...

♦ “All machinery is derived from nature, and is founded on the teaching and
instruction of the revolution of the firmament.”

15

Core Concepts for “Physical” Programming

16

Quality of Service
♦ The physical characteristics of software can be specified using

the general notion of Quality of Service (QoS):

a specification of how well a service can (or should) be performed

� throughput, latency, capacity, response time, availability, security...

� usually a quantitative measure

♦ QoS concerns have two sides:

� offered QoS: the QoS that is available

� required QoS: the QoS that is required to do a job

17

Resource
(e.g., data base)

Resources and Resource Usage
♦ Resource:

an element whose ability or capacity is limited, directly or
indirectly, by the finite capacities of the underlying physical
elements

♦ The relationship between resources and resource users

Client
Resource Usage

ReadDB()

Key issue:
(RequiredQoS ≤≤≤≤ OfferedQoS) ?

RequiredQoS
(e.g., 2 ms response)

ReadDB()

OfferedQoS
(e.g., 1 ms response)

18

Offered vs. Required QoS
♦ Like all guarantees, the offered QoS is conditional on the

resource itself getting what it needs to do its job

Client S1

S1

ResourceA S2

S2

ResourceB

♦ This extends in two dimensions:
� the peer dimension
� the layering dimension: for platform dependencies

CPUCPU CPU

CPU

Physical Processor

CPU

Physical Processor

19

“Physical” Types
♦ Types specify observable behavior

� include QoS characteristics

♦ Required to answer the fundamental engineering question:
� can a component (resource) support its required “load”?

♦ Declaration:
readDB (recNum : RecordId) : DBrecord

{QoS: responseTime = 0.75 * $CPUrate;}

a kind of postcondition – implementation
indepenent!

♦ Usage:
curRec : DBrecord;
recNo : RecordId;
...
curRec := myDB.readDB(recNo)
{QoS: responseTime ≤≤≤≤ 1};

20

Physical Type Checking
♦ Can physical types be statically checked by a compiler?

� The good news: Yes (in most cases)
� The bad news: typically requires complex analysis methods (queueing

network analysis, schedulability analysis, etc.)
…but then, model checking and theorem proving is not simple either

♦ Some issues:
� In most cases QoS analysis cannot be done incrementally – the full

system context is required
…but then, the same holds for many formal verification methods

� Each type of QoS (e.g., bandwidth, CPU performance) combines
differently – no general theory for QoS analysis

♦ However, much of this can be automated
� …just like model checking and theorem proving

21

Physical Type Checking Tools
♦ Method supported by the real-time UML standard

Model Editing
Tool

5

3.1

4

Model Analysis
Tool

Automated
model conversion

Inverse
model conversion

Model

quantitative
annotations

22

The True Path to Platform Independence

23

Achieving Platform Independence with QoS Concepts

♦ Dilemma: How can we achieve platform independence if
our application logic is a function of the physical QoS
characteristics of the platform?

♦ Solution: Declare a technology-independent specification
of the envelope of acceptable platform characteristics
(required QoS) along with the application

� i.e., make platform assumptions explicit

24

Specifying Platform Characteristics
♦ An Internet-based video application

Environment A:
-- IPC rate = …
-- CPU speed = …
-- availability = …

Environment D:
-- throughput = …
-- delay = …
-- availability = …

Environment C:
-- IPC rate = …
-- CPU speed = …
-- availability = …

Environment B:
-- IPC rate = …
-- CPU speed = …
-- availability = …

vp : VideoPlayer

vw : VideoWindow b : Browser

ws : WebServer

vs : VideoServer

QoS domain

25

QoS Domains

♦ A domain in which certain QoS values apply uniformly:
� CPU performance

� communications characteristics (delay, throughput, capacity)

� failure characteristics (e.g., availability, reliability)

� etc.

♦ The QoS values of a domain can be compared against
those offered by a concrete platform to see if that
platform is adequate
� …or, they can be used to synthesize the required domain

26

Summary
♦ The dependency of software on the physical aspects of

its environment (platform) can be fundamental and must
be clearly understood if we want to build correct software
� Correctness extends beyond logical correctness to physical

correctness

♦ We must adjust our software techniques, technologies,
and methods to account for this
� Avoid overly literal interpretations of general design principles

such as separation of concerns
� The use of models and model analysis are a step in this

direction
� Software models: can evolve directly into applications

27

“Physical” Programming: A Metrification of Logic

♦ The concepts of QoS, resource, and resource usage
provide a foundation for addressing issues stemming
from the physical underpinning of all software
� the basis for formal verification

{required QoS ≤ QoS of the platform}

♦ May also be used to automatically synthesize
engineering environments that satisfy a given QoS
specification of a logical model

♦ An initial attempt to capture this approach can be found
in the real-time UML standard

