A Giotto-based Helicopter Control System

Marco A.A. Sanvido¹, Christoph M. Kirsch¹, Thomas A. Henzinger¹, Wolfgang Pree² ¹University of California, Berkeley ²University of Salzburg, Austria

Second International Workshop on Embedded Software EMSOFT 2002 7 Oct. 2002, Grenoble, FR

Project Objectives

- 1. Demonstrate feasibility of Giotto
 - Implementing a real complex control problem
- 2. Demonstrate benefits of Giotto
 - Comparing it with an existing solution

Re-implementing the autopilot control system developed at ETH Zürich (project OLGA)

The Helicopter

The Helicopter

Swiss Feral Institute of Technology interdisciplinary project (1997-2001): •Helicopter Model (Hunziker AG) •Control (LQR)

- •Navigation (Extended Kalmann Filter)
- •Computer System (StrongARM) •RTOS (HelyOS)

2001 weControl GmbH, makes&produces wePilot1000

The Platform

The Controller

- Data Visualization
- Flight Monitoring
- Flight Planning
- Flight Commands

- Sensor Data Evaluation
- Flight Control
- Trajectory
- Flight Data Recording

The Legacy Control Software Implementation

- 1. Modular software implementation (Oberon language)
- 2. Functionality and timing was mixed
- 3. Functionality (i.e., navigation/control) was hand-coded from Simulink Model

Code:

Set of tasks with different priorities, communicating via shared memory and message passing.

Giotto & E code

why Giotto?

The Giotto Programmer's Model

Giotto: Glue code that calls 1. and 2. in order to realize 3.

ms, 10/7/2002

Mode Switch

Platform-independent Software Model

The FLET Assumption (Fixed Logical Execution Time)

The FLET Assumption (Fixed Logical Execution Time)

=---

Advantages of the FLET:

-predictable timing and value behavior (environment determined programs: no race conditions, minimal jitter)

-portable, composable code (as long as the platform offers sufficient performance)

Disadvantage of the FLET:

-tasks don't always use latest available data (a small price to pay, e.g. model helicopter)

The Giotto Tool Chain

-a virtual machine that mediates the interaction of physical processes (sensors and actuators) and software processes (tasks and drivers) in real time

-the Giotto compiler can be retargeted to a new platform by porting the Embedded Machine

The Re-Implementation

The Legacy Implementation

The Re-Implementation

The Giotto Tool Chain

The Controller Modes

Data Flow in ControlOn mode

Helicopter Software: Giotto Syntax (Functionality)

actuator servo_type Servo := servo_init
 uses servo_device ;

output

. . .

filter_type ADFilterOutput := filter_init ;

servo_type NavConOutput := servo_init ;

driver sensing (GPS) output (gps_type gps)
{ gps_pre_processing (GPS, gps) }

task NavCon (filter_type filter, gps_type gps) output (NavOutput)

{ navcon_code (filter, gps, NavOutput) }

The FLET Assumption (*ControlOn* mode)

Helicopter Software: Giotto Syntax (Timing)

. . .

{

}

. . .

mode ControlOn() period 25ms

actfreq 1 do Actuator (actuating) ;

taskfreq 5 do ADFilter (input) ;
taskfreq 1 do NavCon (sensing) ;

Generated E code (*ControlOn* mode)

Generated E code (*ControlOn* mode)

Generated E code (*ControlOn* mode)

Execution of *ControlOn* Mode (Rate Monotonic Scheduler)

- Giotto is applicable to real-complex and highperformance control systems
- Timing is correct-by-construction
- Functionality code is domain-dependent and platform-independent (wcet)
- Tasks are composable
- Giotto introduces computational overhead (~2% /5ms in the helicopter example)
- Simple to implement (2 man/month)

End

(software) www.eecs.berkeley.edu/~fresco/giotto
(helicopter) www.heli.ethz.ch

