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The Back End!




The Back End!

The Sixth no sooner had begun
About the beast to grope
Than, seizing on the swinging tail
That fell within his scope,
"I see," quoth he, "the Elephant

Is very like a rope!"
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The Application Specific/General Purpose Dichotomy

ASIC

Low Flexibili

¢ Application Specific Integrated Circuits (ASICs)
+ Efficient, non-flexible, implementation of specific applications
+ Only choice for high-performance/low power systems

@ General Purpose Processors (GPPs)
+ Flexible, inefficient, platforms for software implementations

+ Only choice for complex (dynamic data structures, recursion) or dynamically changing
algorithms



The Middle Ground

SW on GPP
A
Total Cost ASIC
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& Costs
+ ASICs

¢ Non-recurring costs (design, manufacturing set-up) higher
¢ Per-unit manufacturing costs lower

+ SWon GPP

¢ Non-recurring costs lower
¢ Per-unit cost higher



Rising ASIC Non-Recurring Costs

SW on GPP

— . ASIC
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4 Increase in ASIC Non-recurring Costs

+ Design getting harder
¢ Higher engineering costs

+ More expensive design tools
+ Increasing mask costs

¢ Traditional ASICs moving to programmable processors
+ High efficiency requirements require significant application specific processor



From ASICs to ASIPs: The Next Design Discontinuity
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¢ Current design practices ad-hoc, with little
Controller
tool support.

Intel IXP 1200
The MESCAL Project Mission:

To bring a disciplined methodology, and a supporting tool set, to the
development of application-specific programmable platforms.



ASIC — ASIP: Tool Requirements

€ Key aspects: De;ign "
+ Ability to specify the design in a Specification (e.g.
formal specification. Verilog/VHDL)
+ Ability to validate the design for
ctonttndiors s | (i
Validation
¢ ASIP requirements: . .
+ Ability to formally specify the Design Synthesis
ASIP )
+ Ability to validate this design for Timing/Power
functionality/timing/power using Validation

this specification




Specification Space

5 Axes of the Architectural Design Space

¢ Approaches to Parallel Processing
+ Processing Element (PE) level - threads and processes
+ Instruction-level
+ Bit-level

¢ Elements of Special Purpose Hardware

+ e.g. Hash engine

¢ Structure of Memory Architectures
+ Distributed special purpose memories
+ Memory hierarchies
¢ Types of On-Chip Communication Mechanisms
+ Buses
+ Networks

¢ Use of Peripherals

+ Peripheral behavior and interaction with computation



MESCAL Architecture Description (MAD)

& Formal specification of instructions and their use of micro-architectural resources.

+ Computation instructions
« Communication instructions
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Operation State Machine (OSM)

the resource
Tokens allocation policy

abstraction of structural
and data resources
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OSM (cont.)

¢ Cleanly separation of micro-processors into two layers
+ Operation layer — Instruction semantics, resource consumption and timing

+ Hardware layer — Pipeline control, external interface

¢ Easy modeling of common pipeline behaviors
+ Distributes control policies into token managers
+ Supports superscalar, VLIW, Multi-threaded architecture modeling

¢ Formal model

+ Easy to synthesize simulators.

+ Easy to analyze and extract model properties for verification purposes and for
compiler optimization.



MAD Views

¢ However, tools have different views of the architecture
& View Generators create views from MAD
+Compiler View
+Timing Simulator View
+Functional Simulator View

Document View

== Emulation

== Code generator

== Instruction Selection
== Register classes

Semantics View
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RegFile X X
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Scheduling View




Liberty Timing Simulator View
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¢ Architectural and micro-architectural specification

+ Modular, extensible natural specification
¢ Netlist of micro-architectural modules

*

Formal concurrency semantics (Synchronous Reactive)

+ Retargetable simulator synthesis



On-chip Communication Architectures

¢ Rich diversity

+ From buses to packet-switching networks
+ Need to consider these in a single framework

¢ No established micro-architecture primitives

+ ldentify a small sufficient set of primitives
¢ Links
¢ Buffers
¢ Resource Scheduler
¢ Interface

+ Using object-oriented analysis
¢ Commonality analysis
¢ Differentiation
¢ Classification by inheritance

+ Build micro-architectural models with significant reuse



Class Inheritance Hierarchy of OCAs
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Issues in Power Modeling and Simulation

¢ Simulator needs to be architecture/microarchitecture retargetable
¢ Models need to be technology retargetable
¢ Model needs to reflect design reuse

< Hierarchical modeling methodology to enable this:

« atomic layer: collection of components that switch together
¢ Have same switching characteristics
¢ Physical parameters are technology dependent

« structure layer: circuit building blocks, e.g. decoder, tri-state buffer, etc.

+ prototype layer: an abstract function unit with structure but no functionality, e.g.
general memory array

+ physical layer: a concrete function unit, e.g. data cache



An Example

¢ Data cache power model hierarchy and its data flow
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Advantages of Modeling Hierarchy

@ Separation of microarchitecture dependency and
technology dependency

¢ Fine-grained modeling granularity

+ Arbitrary tradeoff between accuracy and efficiency

¢ Reusability

« Structure layer — building blocks

+ Prototype layer — templates

4 Easy to maintain and extend



Compiler Issues

¢ Individual processors have significant specialization

+ Irregular instruction level parallelism

+ Specialized functional units and memories

@ Multiprocessor compilation needs to synthesize
communication and synchronization code

+ Use architectural specification of the on-chip communication
architectures for direct translation



Handling Irregular ILP

[rregular architecture
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¢ Problem Statement

+ Input : The set of all Instructions in the ISA where each instruction represents a
set of operations that can be issued in parallel

+ Output: Assign a set of artificial resources such that
¢ operations that can be issued in parallel do not share an artificial resource
¢ operations that cannot be issued in parallel share an artificial resource

+ Use a graph coloring algorithm to construct artificial resources

¢ Irregular ILP is converted into regular ILP for use in conventional VLIW
resource based schedulers



Artificial Resource Assignment Algorithm using
Graph Coloring

Ops that can be issued

in parallel
Compatibility SFT LOAD
Annotate Graph G(V,E) ADD LOAD
v,: SFT v,:ADD MPY LOAD LOAD
( !C1) ’C1)
VCC Complement c | ,
Graph Coloring’ v,: LOAD1 G(V.E)
(C3) ’

v,: MPY
(©2)

VCC Graph
Transformation?

[1] M.A.Trick et al. Vertex clique cover

(VCC) Graph G,(V,E)
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Iris: Integration of Peripheral Devices
Device Driver

Iris Device Driver Interface

A

Iris Device Specification

Iris Platform Abstraction

Iris Specification

m+n vs. m*n

Platforms © Iris Platform Iris Device Devices
Spec Spec




Toolset Summary

.
{ Application
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Summary

¢ Rising non-recurring costs for ASICs leads to:

+ Lower ASIC design starts
+ Increase in ASIPs

¢ ASIP design methodology with
+ Formal specification of ASIPs

+ Development of software evaluation environments from this specification
¢ Simulators
+ Timing and power
+ Computation and communication architectures
¢ Compilers
+ Architecture and microarchitecture retargetable
+ Computation and communication
¢ Peripherals
+ Synthesis of drivers from device behavior specifications



