
1

Automatic Production of

Globally Asynchronous

Locally Synchronous Systems

Alain GIRAULT INRIA Rhône-Alpes

and

Clément MÉNIER ENS Lyon



Outline 2

1. GALS Systems

2. Related Work

3. Program model

4. Our method in details

5. Perspectives



GALS Systems 3

Acronym for “Globally Asynchronous Locally Synchronous”

In software : paradigm for composing blocks and making them

communicate asynchronously

➥ Used in embedded systems

In hardware : circuits designed as sets of synchronous blocks

communicating asynchronously

➥ No need to distribute the clock =⇒ saves power

Our goal : automatically obtain GALS systems from a centralised

program



Automatically Distributed Programs 4

Why distribute ?

➥ physical constraints, fault-tolerance, performance...

Advantages of automatic distribution :

◆ less error-prone than by hand

◆ possibility to debug & validate before distribution

◆ ...



Related Work 5

The closest is Berry & Sentovich’2000 :

“Implementation of constructive synchronous circuits as a network of

CFSMs in POLIS”

Main differences with our work :

1. Partitioning of the circuit into N clusters is by hand

Our partitioning is automatic

2. They partition the circuit, that is the control part

We partition the data part and replicate the control part



Program Model : Synchronous Circuits 6

Program = synchronous sequential circuit driving a table of actions

A control part and a data part :

◆ Control part = synchronous sequential boolean circuit

◆ Data part = table of external actions

➥ manipulate inputs, outputs, and typed variables (integers,

reals...)

A program has a set of input and output signals

Signals can be pure or valued

Valued signals are associated to a local typed variable

It can be obtained from Esterel =⇒ so called SC internal format

VHDL code can be generated from it



Program Model : Properties 7

The control structure is :

◆ Parallel : there are several control paths

◆ Implicit : the state is coded in the registers

◆ Dynamic : the control depends on the data

Important property : any given variable can only be modified in one

parallel branch (same as in Esterel)



An Example : FOO 8

1

0

N1:=0
0

N1:=N1+1
emit O1(N1)

N2:=N2*N1

N2:=0

emit O2(N2)

1

1
input I2; ift PI2

N2:=N2+1

input I1; ift PI1

input I1 ; ift PI1 N2 := N2 + 1 N2 := 0

input I2 ; ift PI2 N2 := N2 * N1 emit O2(N2)

N1 := 0 emit O1(N1) N1 := N1 + 1



Distribution Method 9

1. Design a centralised system

2. Compile it into a single synchronous circuit

3. Distribute it into N communicating synchronous circuits

We focus here on the point 3 : the automatic distribution



Distribution Specifications 10

Must be provided by the user :

◆ The desired number of computing locations

◆ The localisation of each input and output

➥ derived from the physical localisation of the sensors and

actuators



Distribution Specifications of FOO 11

1

0

N1:=0
0

N1:=N1+1
emit O1(N1)

N2:=N2*N1

N2:=0
N2:=N2+1

emit O2(N2)

1

1
input I2; ift PI2

input I1; ift PI1

location L location M

I1,O2 I2,O1



Where are we Heading ? 12

1

0

0

10

0

1

1

PI1:=receive(L,PI1) ift PI1

N1:=0

input I2; ift PI2

send(L,PI2)

N1:=N1+1
emit O1(N1)

send(L,N1)

send(M,PI1)

input I1; ift PI1

PI2:=receive(M,PI2) ift PI2

N2:=0
N2:=N2+1

N1:=receive(M,N1) N2:=N2*N1 emit O2(N2)

location M

location L



Distribution Algorithm : Principle 13

Based on past work : Caspi, Girault, & Pilaud’1999

➥ Replicate the control part and partition the data part

1. Localise each action to get N virtual circuits

2. Solve the distant variables problem for each virtual circuit

3. Project each virtual circuit to get one actual circuit

4. Solve the distant inputs problem

We obtain N circuits communicating harmoniously

➥ without inter-blocking and with the same functional behaviour



Communication Primitives 14

Asynchronous communications

➥ Two FIFO queues associated with each pair of locations and each

variable

➥ Each queue is identified by a triplet 〈src, var, dst〉

Two communication primitives :

◆ On location src : send(dst,var) non blocking

◆ On location dst : var:=receive(src,var) blocking when empty



Localisation of the Actions 15

Only the data part is partitioned : the control part is replicated

loc. action loc. action loc. action

L input I1 ; ift PI1 L N2 := N2 + 1 L N2 := 0

M input I2 ; ift PI2 L N2 := N2 * N1 L emit O2(N2)

M N1 := 0 M emit O1(N1) M N1 := N1 + 1

1

0

0

1

1
input I2; ift PI2

N1:=0

N1:=N1+1
emit O1(N1)

input I1; ift PI1

N2:=0
N2:=N2+1

N2:=N2*N1 emit O2(N2)



Two Problems to Solve 16

1. Distant variables problem :

➥ Not computed locally

➥ We add send and receive actions

2. Distant inputs problem :

➥ Not received locally

But : input signals convey two informations : value and presence

And : an ift net is required to modify the control flow

according to the input’s presence

➥ We add input simulation blocks



Solving the Distant Variables Problem 17

We apply a simple algorithm to solve the data dependencies to each

buffered path (sequential path) :

1. Isolate a buffered path and mark its root and tail

2. Insert the send actions in the buffered path

➥ Traverse the path backward to insert the send actions asap

3. Insert the receive actions in the buffered path

➥ Traverse the path forward to insert the receive actions alap

4. Proceed to the unmarked successor nets of the tail



Partial Result for FOO 18

1

0

0

1

1

emit O2(N2)

N2:=N2+1

N2:=N2*N1 N1:=receive(L,N1)

input I1; ift PI1

N2:=0N1:=0

input I2; ift PI2

N1:=N1+1
emit O1(N1)

send(L,N1)

This is still one circuit representing two virtual circuits

The next step is to project onto two actual circuits



Projection for FOO 19

0

10

1

emit O2(N2)

N2:=N2+1

N2:=N2*N1 N1:=receive(L,N1)

input I1; ift PI1

N2:=0N1:=0

input I2; ift PI2

N1:=N1+1
emit O1(N1)

send(L,N1)

1

0

1

0

1

1

emit O2(N2)

N2:=N2+1

N2:=N2*N1 N1:=receive(L,N1)

input I1; ift PI1

N2:=0N1:=0

input I2; ift PI2

N1:=N1+1
emit O1(N1)

send(L,N1)



Projection for FOO 20

0

0

1

emit O2(N2) N2:=N2*N1 N1:=receive(L,N1)

input I1; ift PI1

N2:=0N1:=0

input I2; ift PI2

N1:=N1+1
emit O1(N1)

send(L,N1)

1

1

0

1

N2:=N2+1

0

1

1

emit O2(N2)

N2:=N2+1

N2:=N2*N1 N1:=receive(L,N1)

input I1; ift PI1

N2:=0N1:=0

input I2; ift PI2

N1:=N1+1
emit O1(N1)

send(L,N1)

location L

location M



Projection for FOO 21

0

1

0

10

1

1

emit O1(N1)
N1:=N1+1

N1:=0

input I2; ift PI2 send(L,N1)

0

1

1

input I1; ift PI1

N2:=0
N2:=N2+1

emit O2(N2) N2:=N2*N1 N1:=receive(L,N1)

location M

location L



Solving the Distant Inputs Problem 22

Reminder : input signals convey two informations : the value and the

presence

And : an ift net is required to modify the control flow according to

the input’s presence

Our goal is to send the presence information only to those

computing locations that need them :

1. Detect the impure input-dependent nets and their needed inputs

➥ Circuit traversal to compute for each net the set

Input = {needed inputs}

2. Create the simulation blocks for the input nets

3. Connect the nets detected at step 1 to the required simulation

blocks



Creation of the Input Simulation Blocks 23

2

1
input I ; ift PI

On all M such that I /∈ M

PI :=receive(L,PI) ift PI

On the L such that I ∈ L
input I ; ift PI

send(PI,M)



Connection of the Input Simulation Blocks 24

2

1

ift PBPB:=receive(L,PB)

send(PA,M)
simulation bloc for A

simulation bloc for B

Input = {A, B}

Visited ∧ Input = ∅ {

Visited ∨ Input 6= ∅ {



Connection of the Input Simulation Blocks 25

2
ift PB

1

simulation bloc for A

simulation bloc for B

send(PA,M)

PB:=receive(L,PB)
Input = {A, B}

Visited ∧ Input = ∅ {

Visited ∨ Input 6= ∅ {



Connection of the Input Simulation Blocks 26

1
send(PA,M)

2

simulation bloc for A

simulation bloc for B

PB:=receive(L,PB) ift PB

Visited ∧ Input = ∅ {

Input = {A, B}

Visited ∨ Input 6= ∅ {



Connection of the Input Simulation Blocks 27

1
send(PA,M)

2

simulation bloc for A

simulation bloc for B

PB:=receive(L,PB) ift PB

Visited ∧ Input = ∅ {

Input = {A, B}

Visited ∨ Input 6= ∅ {

Connection of an OR gate is similar



Final Result for FOO 28

1

0

0

10

0

1

1

PI1:=receive(L,PI1) ift PI1

N1:=0

input I2; ift PI2

send(L,PI2)

N1:=N1+1
emit O1(N1)

send(L,N1)

send(M,PI1)

input I1; ift PI1

PI2:=receive(M,PI2) ift PI2

N2:=0
N2:=N2+1

N1:=receive(M,N1) N2:=N2*N1 emit O2(N2)

location M

location L



Conclusions and Future Research 29

This methods works and a tool exists : screp

➥ http://www.inrialpes.fr/bip/people/girault/Screp

Only interesting if the data part is big (because the control part is

replicated)

Short-term perspectives : hardware/software codesign,

post-distribution optimisations, ...

The most interesting perspective is to mix this approach with

Berry & Sentovich’2000 :

◆ Accepting as inputs cyclic constructive circuits

◆ Automatic partitioning of the circuit into N clusters

◆ Partitioning both the data part and the control part


