Automatic Production of

Globally Asynchronous

Locally Synchronous Systems

Alain GIRAULT INRIA Rhone-Alpes
and

Clément MENIER ENS Lyon

Outline

GALS Systems

Related Work

Program model

Our method in details

Perspectives

GALS Systems

Acronym for “Globally Asynchronous Locally Synchronous”

In software : paradigm for composing blocks and making them
communicate asynchronously
[l Used in embedded systems

In hardware : circuits designed as sets of synchronous blocks
communicating asynchronously
[] No need to distribute the clock = saves power

Our goal : automatically obtain GALS systems from a centralised
program

Automatically Distributed Programs

Why distribute 7

[1 physical constraints, fault-tolerance, performance...

Advantages of automatic distribution :

0 less error-prone than by hand

0 possibility to debug & validate before distribution

Related Work

The closest is Berry & Sentovich’2000

“Implementation of constructive synchronous circuits as a network of
CFSMs in POLIS”

Main differences with our work :

1. Partitioning of the circuit into N clusters is by hand
Qur partitioning is automatic

2. They partition the circuit, that is the control part
We partition the data part and replicate the control part

Program Model : Synchronous Circuits

6

Program = synchronous sequential circuit driving a table of actions
A control part and a data part :
0 Control part = synchronous sequential boolean circuit

0 Data part = table of external actions
[manipulate inputs, outputs, and typed variables (integers,
reals...)

A program has a set of input and output signals

Signals can be pure or valued

Valued signals are associated to a local typed variable

It can be obtained from Esterel =— so called SC internal format

VHDL code can be generated from it

Program Model : Properties

T he control structure is :

0 Parallel : there are several control paths

O Implicit : the state is coded in the registers

0O Dynamic : the control depends on the data

Important property : any given variable can only be modified in one
parallel branch (same as in Esterel)

An Example : F0OO

0
2\ .
emit O1(N1)
input I1; ift PI1 __ >
1 > ™ N1_NHJD>_'
|/
04 N1.=0'1>N2.=0 4>_+:\ N2:=N2+1 >_
input 12; ift P2) >—1 N2:=N2*N1_ emit 02(N2)
= > | ——D >
input I1; ift PI1 N2 := N2 + 1 N2 :=0

input I2; ift PI2

N1 :=0

N2 := N2 * N1

emit 01(N1)

emit 02(N2)

N1

:= N1 + 1

Distribution Method

1. Design a centralised system

2. Compile it into a single synchronous circuit

3. Distribute it into N communicating synchronous circuits

We focus here on the point 3 : the automatic distribution

Distribution Specifications

10

Must be provided by the user :

0 The desired number of computing locations

0 The localisation of each input and output

[] derived from the physical localisation of the sensors and
actuators

Distribution Specifications of FOO

0
I\ .
emit O1(N1)
input I1; ift P, N1:=N1+1 >
1 | > :> - >4
o [N1:=0__ N2:=0 4>_+: >_
A\ - ™~ N2:=N2+1{>
—9 — * H
input I2; ift PI2,_ | W N2:=N2 N1{>em|t 02(N2)
1 1> ——l >

location L | location M

11,02 12,01

Where are we Heading ? 12

}: send(L,P12)

D

4 > (location 1.)
send(M,PI1) A
input 1; ift PI1__ >
Pt
0! S)/D{ >_
= -~ 2=z, >~{ Dm (MN1) . N2:=N2*N1 02(N2)
. \ = i =N2* it
P12:=receive(M,PI2) _ ift PI2 receivetibivt) N e
ﬁ> > DJ 1> 1>
(]
\J
0 location V
g 0 ()
N ~_emit 01(N1)
PI1:=receive(L,PI1),\ift PI1,\ N1:=N1+1 L~
> L~ ————>—¢
N1:=0 >_
[N
0 ~ P A/’>{
. r)—| > send(L,N1)
4 input2; ift PI2{>J | :l)

Distribution Algorithm : Principle

13

Based on past work : Caspi, Girault, & Pilaud’'1999

[l Replicate the control part and partition the data part

4.

ocalise each action to get N virtual circuits

Solve the distant variables problem for each virtual circuit

Project each virtual circuit to get one actual circuit

Solve the distant inputs problem

We obtain N circuits communicating harmoniously
[l without inter-blocking and with the same functional behaviour

Communication Primitives 14

Asynchronous commuhnications

[Two FIFO queues associated with each pair of locations and each
variable

[1 Each queue is identified by a triplet (src,var,dst)

Two communication primitives :

0 On location src : send(dst,var) non blocking

0 On location dst : var:=receive(src,var) blocking when empty

Localisation of the Actions 15
Only the data part is partitioned : the control part is replicated
locC. action locC. action locC. action
L input I1; ift PI1 L N2 := N2 + 1 L N2 := 0
M input I2; ift PI2 L N2 := N2 * N1 L emit 02(N2)
M N1 :=0 M emit 01(N1) M N1 := N1 + 1
0
2\ .
emit O1(N1)
. . N
input I1; ift P|1'\ N1:=N1+1 L~
1 L~ > D—o
o [N1:=0,_N2:=0 >_+: >_
A - N N2:=N2+1 - _
1> —_D

Two Problems to Solve

16

. Distant variables problem :

Not computed locally

We add send and receive actions

. Distant inputs problem :

Not received locally

But : input signals convey two informations : value and presence

And : an ift net is required to modify the control flow
according to the input’s presence

We add input simulation blocks

Solving the Distant Variables Problem

17

We apply a simple algorithm to solve the data dependencies to each
buffered path (sequential path) :

1.

Isolate a buffered path and mark its root and tail

Insert the send actions in the buffered path
[] Traverse the path backward to insert the send actions asap

Insert the receive actions in the buffered path
[Traverse the path forward to insert the receive actions alap

Proceed to the unmarked successor nets of the tail

Partial Result for F0OO 18

0
I\ .
emit O1(N1)
input I1; ift P NT:2NT+1 >
1 1>) : {>_.
o [T N0 N2:=0 4>_+:)_
A - ~ N2:=N2+1
input 12; ift P12 | J >— send(L,N1) >
1 1> ——D

emit 02(N2) _, N2:=N2*N1__ N1:=receive(L,N1)

< <

T his is still one circuit representing two virtual circuits

The next step is to project onto two actual circuits

Projection for FOO

19

input I1; ift PI1

0

N\

0_

1
PN

N1:=0

N2:=0

input 12; ift P12

el

j N1:=N1+1[

1

vV V.V

j N2:=N2+1[

emit 01(N1)

—e

>_

N
>

—I D send(L,N1)[

emit02(N2)/] N2:=N2"N1__ N1:=receive(L,N1)

~

\1

Projection for FOO

(Iocation L)

0
O\ .
emit O1(N1)
input 11; ift PI1__ NT:<NT+1 >
1>) >
o[N1:=0, N2:=0 4>_+:)_
A - N2:=N2+1
input I2; ift PI2,_ | > > send(L,N1)
1 1> ;l) —>
emit O2(N2) N2:=N2*N1/IN1:=receive(L,N1)
\1 Y
(Iocation M)
0
O\ .
emit O1(N1)
input I1; ift P, NT-<N141 >
1 > = 1l
0 | 1 N1:=0'\N2:=0)_
A 1~
input 12; ift PI2,_ | -1 send(L,N1)
1 1> ;l) —>

emit02(N2)/] N2:=N2*N1/IN1:=receive(L,N1)
~ ~

Projection for F0OO

21

>

[Iocation L]

input 1; ift P, >
| —9
0 | 1 '\N2:=0 H)_
A - N2:=N2+1
1 >) _T__D—[>
L~
emit O2(N2) N2:=N2*N1/IN1:=receive(L,N1)
~ N
[Iocation M]
0
A ~_ emit 01(N1)
: N N1:=N1+1 -
L~ —
N1:=0 >_
o ! >
input 12; ift P12,
1 1>

— D send(L,N1) [

JAN

pd
~

Solving the Distant Inputs Problem 22

Reminder : input signals convey two informations : the value and the
presence

And : an ift net is required to modify the control flow according to
the input’s presence

Our goal is to send the presence information only to those
computing locations that need them :

1. Detect the impure input-dependent nets and their needed inputs

[] Circuit traversal to compute for each net the set
Input = {needed inputs}

2. Create the simulation blocks for the input nets

3. Connect the nets detected at step 1 to the required simulation
blocks

Creation of the Input Simulation Blocks

23

On the L such thatI € L

al

input I; ift PI

/

On all M such thatI ¢ M

input I; ift PI

» send(PI,M)

PI :=receive(L,PI ift PI !
» PO Pl -4 -

- -

[
L - -

Connection of the Input Simulation Blocks 24

Visited A Input =0 {]

Visited V Input #0 { 7

Input = {A, B}

Connection of the Input Simulation Blocks 25

Visited A Input =0 {] _?‘F’?‘%'?‘F‘?F‘.bé'&’;;‘.’“;l)ﬁ
o L _ _x=Send(PA,M) -
Visited V Input #0 { 7) D

Input = {A, B}

simulation bloc for B

Connection of the Input Simulation Blocks 26

Visited A Input =0 {] _?‘F’?‘%'?‘F‘?F‘.bé'&’;;‘.’“;l)ﬁ
0 L X Sen M) -
Visited V Input # () { - El})

/ ' PB:=receive(L,PB)._ ift PB -
Input = {A, B} o §2> {> ;

simulation bloc for B

Connection of the Input Simulation Blocks 27

Visited A Input =0 {] _?‘F’?‘%'?‘F‘?F‘.bé'&’;;‘.’“;l)ﬁ
0 L X Sen M) -
Visited V Input # () { - El})

/ ' PB:=receive(L,PB)._ ift PB -
Input = {A, B} o §2> {> ;

simulation bloc for B

Connection of an 0OR gate is similar

Final Result for F0OO 28

}: send(L,P12)

4 > (location 1.)
send(M,PI1) A
input 1; ift PI1__ >
Pt
0! S)/D{ >_
= -~ 2=z, >~{ Dm (MN1) . N2:=N2*N1 02(N2)
. \ = i =N2* it
P12:=receive(M,PI2) _ ift PI2 receivetibivt) N e
ﬁ> > DJ 1> 1>
(]
\J
0 location V
g 0 ()
N ~_emit 01(N1)
PI1:=receive(L,PI1),\ift PI1,\ N1:=N1+1 L~
> L~ ————>—¢
N1:=0 >_
[N
0 ~ P A/’>{
. r)—| > send(L,N1)
4 input2; ift PI2{>J | :l)

D

Conclusions and Future Research 29

This methods works and a tool exists : screp
[J http://www.inrialpes.fr/bip/people/girault/Screp

Only interesting if the data part is big (because the control part is
replicated)

Short-term perspectives : hardware/software codesign,
post-distribution optimisations, ...

The most interesting perspective is to mix this approach with
Berry & Sentovich’2000

0 Accepting as inputs cyclic constructive circuits
0 Automatic partitioning of the circuit into N clusters

O Partitioning both the data part and the control part

