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What about mixed (hybrid) systems ?
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Some Possible Answers

• Extend the event-driven approach to handle continuous
computations :

Variable-step integration ???

• Extend the time-triggered approach to handle discrete events :

This seems to be a popular approach but it is mostly based on
empirical tricks (borrowed from asynchronous hardware)

⇒ Needs for a sampling theory of discrete event and hybrid
systems

or more generally an approximation theory of discrete event
and hybrid systems
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or

If system S is unstable
and controller C is ...

then the feedback systems is stable
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There exists a minimum stable time Tx associated with a signal x.

x -�
∆ ≥ Tx
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∆′ ≥ Tx

But this is not topology

These signals are also those uniformly continuous with respect to
the Skorokhod distance

Topology is recovered and this encompasses both continuous,
discrete and piece-wise continuous signals.
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Skorokhod Distance

Based on bijective retiming:

• retiming r : non decreasing mapping from R+ to R+

• bijective retiming⇒ increasing and continuous

dS(x, y) = inf
r∈BR

||r − id||∞ + ||xor − y||∞

More generally, the best compromise between shifts and errors
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Proof Hints

Sampling can be represented by non-continuous (hence non
bijective) retiming

For slow varying boolean signals, a continuous retiming can
compensate a periodic non continuous one

On the contrary, for unboundedly fast varying signals, a non
continuous retiming can erase some discontinuities while a
continuous one cannot : compensation is no more possible



Questions



Questions

What are the stable (i.e., approximable) systems for this topology ?



Questions

What are the stable (i.e., approximable) systems for this topology ?

What is feed-back stabilisation in this context ?
(relations with (critical) race avoidance and protocols ?)



Questions

What are the stable (i.e., approximable) systems for this topology ?

What is feed-back stabilisation in this context ?
(relations with (critical) race avoidance and protocols ?)

How can we compute Skorokhod errors for complex systems
(numerical analysis)



Questions

What are the stable (i.e., approximable) systems for this topology ?
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. . .
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