Toward an Approximation Theory for Computerised Control

Paul CaspiAlbert BenvenisteVerimag/CNRSIRISA/INRIA

• Problem statement

• Main result

• Conclusion and questions

Problem Statement

Implementing continuous control systems on computers finds good solutions within the mathematical theory of sampled-data control systems :

sampling theory + numerical analysis + stability

⇒ Periodic sampling (time-triggered systems)

Problem Statement

Implementing continuous control systems on computers finds good solutions within the mathematical theory of sampled-data control systems :

sampling theory + numerical analysis + stability

⇒ Periodic sampling (time-triggered systems)

Implementing discrete control systems on computers find solutions within the theory of discrete event control systems.

⇒ (event-triggered systems)

Problem Statement

Implementing continuous control systems on computers finds good solutions within the mathematical theory of sampled-data control systems :

sampling theory + numerical analysis + stability

⇒ Periodic sampling (time-triggered systems)

Implementing discrete control systems on computers find solutions within the theory of discrete event control systems.

⇒ (event-triggered systems)

What about mixed (hybrid) systems ?

• Extend the event-driven approach to handle continuous computations :

Variable-step integration ???

• Extend the event-driven approach to handle continuous computations :

Variable-step integration ???

 Extend the time-triggered approach to handle discrete events : This seems to be a popular approach but it is mostly based on empirical tricks (borrowed from asynchronous hardware)

• Extend the event-driven approach to handle continuous computations :

Variable-step integration ???

 Extend the time-triggered approach to handle discrete events : This seems to be a popular approach but it is mostly based on empirical tricks (borrowed from asynchronous hardware)

 \Rightarrow Needs for a sampling theory of discrete event and hybrid systems

• Extend the event-driven approach to handle continuous computations :

Variable-step integration ???

- Extend the time-triggered approach to handle discrete events : This seems to be a popular approach but it is mostly based on empirical tricks (borrowed from asynchronous hardware)
 - \Rightarrow Needs for a sampling theory of discrete event and hybrid systems
 - or more generally an approximation theory of discrete event and hybrid systems

Verification or synthesis algorithms?

Theorems such that

If signal x is samplable and system S is time-invariant and stable then signal S(x) is samplable

Theorems such that

If signal x is samplable and system S is time-invariant and stable then signal S(x) is samplable

Proof based on the L_{∞} norm

or

If system *S* is unstable and controller *C* is ... then the feedback systems is stable

or

If system *S* is unstable and controller *C* is ... then the feedback systems is stable

Samplable boolean signals are signals with uniform bounded variability:

There exists a minimum stable time T_x associated with a signal x.

Samplable boolean signals are signals with uniform bounded variability:

There exists a minimum stable time T_x associated with a signal x.

But this is not topology

Samplable boolean signals are signals with uniform bounded variability:

There exists a minimum stable time T_x associated with a signal x.

But this is not topology

These signals are also those uniformly continuous with respect to the Skorokhod distance

Samplable boolean signals are signals with uniform bounded variability:

There exists a minimum stable time T_x associated with a signal x.

But this is not topology

These signals are also those uniformly continuous with respect to the Skorokhod distance

Topology is recovered and this encompasses both continuous, discrete and piece-wise continuous signals.

Skorokhod Distance

Based on bijective retiming:

- retiming r : non decreasing mapping from \mathcal{R}^+ to \mathcal{R}^+
- bijective retiming \Rightarrow increasing and continuous

$$d_{S}(x,y) = \inf_{r \in BR} ||r - id||_{\infty} + ||x \circ r - y||_{\infty}$$

Skorokhod Distance

Based on bijective retiming:

- retiming r : non decreasing mapping from \mathcal{R}^+ to \mathcal{R}^+
- bijective retiming \Rightarrow increasing and continuous

$$d_S(x,y) = \inf_{r \in BR} ||r - id||_{\infty} + ||x \circ r - y||_{\infty}$$

Boolean signal example : the largest time shift between corresponding edges

Skorokhod Distance

Based on bijective retiming:

- retiming r : non decreasing mapping from \mathcal{R}^+ to \mathcal{R}^+
- bijective retiming \Rightarrow increasing and continuous

$$d_{S}(x,y) = \inf_{r \in BR} ||r - id||_{\infty} + ||xor - y||_{\infty}$$

More generally, the best compromise between shifts and errors

Proof Hints

Sampling can be represented by non-continuous (hence non bijective) retiming

For slow varying boolean signals, a continuous retiming can compensate a periodic non continuous one

Proof Hints

Sampling can be represented by non-continuous (hence non bijective) retiming

For slow varying boolean signals, a continuous retiming can compensate a periodic non continuous one

On the contrary, for unboundedly fast varying signals, a non continuous retiming can erase some discontinuities while a continuous one cannot : compensation is no more possible

What are the stable (i.e., approximable) systems for this topology ?

Questions

What are the stable (i.e., approximable) systems for this topology ?

What is feed-back stabilisation in this context ? (relations with (critical) race avoidance and protocols ?)

Questions

What are the stable (i.e., approximable) systems for this topology ?

What is feed-back stabilisation in this context ? (relations with (critical) race avoidance and protocols ?)

How can we compute Skorokhod errors for complex systems (numerical analysis)

Questions

What are the stable (i.e., approximable) systems for this topology ?

What is feed-back stabilisation in this context ? (relations with (critical) race avoidance and protocols ?)

. . .

How can we compute Skorokhod errors for complex systems (numerical analysis)