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What about mixed (hybrid) systems ?
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Some Possible Answers

e Extend the event-driven approach to handle continuous
computations :

Variable-step integration ???

e Extend the time-triggered approach to handle discrete events :

This seems to be a popular approach but it is mostly based on
empirical tricks (borrowed from asynchronous hardware)

= Needs for a sampling theory of discrete event and hybrid
systems

or more generally an approximation theory of discrete event
and hybrid systems
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What do we mean by a theory?

If system S Is unstable
and controller C'is ...
then the feedback systems is stable
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But this is not topology

These signals are also those uniformly continuous with respect to
the Skorokhod distance

Topology is recovered and this encompasses both continuous,
discrete and piece-wise continuous signals.
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e bijective retiming =- increasing and continuous
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Boolean signal example : the largest time shift between
corresponding edges
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Skorokhod Distance
Based on bijective retiming:
e retiming » : non decreasing mapping from R+ to R~

e bijective retiming =- increasing and continuous

ds(x,y) = f ||r —idle + [lzor —ylle

More generally, the best compromise between shifts and errors
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Proof Hints

Sampling can be represented by non-continuous (hence non
bijective) retiming
For slow varying boolean signals, a continuous retiming can

compensate a periodic non continuous one

On the contrary, for unboundedly fast varying signals, a non
continuous retiming can erase some discontinuities while a
continuous one cannot : compensation is no more possible
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