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Context
• Battery operated systems are very common 

today and will increase in the future:
cell phones, video games, GPS, wearable 
computing, portable TV, videocameras, …

• Most of such systems operate under timing 
constraints to exhibit a desired performance

• Power consumption is also important for 
achieving long lifetime

Power consumption
• In CMOS circuits, the power consumption 

increases with the supply voltage:

• Moreover, the supply voltage also affects the 
circuit delay (hence the max clock frequency):
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Voltage and speed
• Hence, the energy consumed by a system can 

be controlled by the speed and the voltage at 
which the processor operates:
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Voltage variable processors
• To exploit such a possibility, next 

generation processors will be designed to 
work under different voltage levels

GOAL

Minimize the energy consumption while 
meeting task timing constraints
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Existing results
• [Yao et al, 1995]

Off-line scheduling to minimize total energy 
consumption

• [Aydin 2001]
On line speed changes for periodic tasks with 
different power consumption characteristics

• Melhem et al. (2002)
proposed several algorithms for reducing energy 
consumption in power-aware systems

Implicit assumption
All these algorithms implicitly assume that

system performance monotonically increases 
with the processor speed:

performance

speed

Unfortunately this assumption is WRONG!
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Actual situation

performance

speed

Performance may have abrupt changes and 
even be discontinuous

overload

resource
constraints

nominal speed

Running faster does not 
always improves performance
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double speed deadline miss
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A case with non preemptive tasks
τ1

τ2

τ3

τ1

τ2

τ3

deadline missdouble speed

Note that

• Non preemptive tasks can be considered as 
preemptive tasks that share a single 
resource for their entire execution.

Non preemption is a special case of
resource constraints
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Effects of overload

performance

speed

Performance may have abrupt changes and 
even be discontinuous

overload

Negative effects of overload
τ1

τ2

τ3

no execution

deadline miss

half speed

τ1

τ2

τ3
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What do we learn?

• non preemptive sections

• blocking (i.e., critical sections)

• overload conditions

To achieve scalability of performance with 
respect to speed, we need to avoid:

How can we achieve these goals?

Avoiding blocking

• State message semantics: messages are 
overridden by the sender and are not 
consumed by the receiver:
⇒ a new message overwrites the previous one;

⇒ the same message can be read more times.

Blocking for mutual exclusion can be avoided 
by using asynchronous communication buffers:
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This is not enough
State message semantics avoids blocking for 
an empty/full queue but does not avoid 
blocking due to simultaneous accesses:

msg1
τR τW

msg2

Cyclic Asynchronous Buffers 
(CABs)

If a writer task τW arrives while a task τR is 
reading, the new message is written in a 
new buffer:

msg1

CAB

τR

msg2
τW
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• To avoid blocking, if a CAB is shared by N 
tasks, it must have at least N +1 buffers.

• The (N+1)-th buffer is needed for keeping 
the most recent message in the case all the 
other buffers are used.

Dimensioning a CAB

Accessing a CAB
• CABs are accessed through a memory 

pointer.

• Hence, a reader is not forced to copy the 
message in its memory space.

• More tasks can simultaneously read the 
same message.

• At each instant, a pointer (mrd) points to 
the most recent message stored in the CAB.
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Writing Protocol
To write a message in a CAB a task must:

• get a pointer to a free buffer;

• copy the message into the buffer using the 
pointer;

• release the pointer to the CAB to make the 
message accessible to the next reader.

Reading Protocol
To read a message from a CAB a task must:

• get the pointer to the most recent message 
in the CAB;

• process the message through the pointer;

• release the pointer, to allow the CAB to 
recycle the buffer if it is not used.
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• CABs can effectively be used to exchange 
messages among periodic tasks running at 
different rates:

NOTE THAT

• This type of mechanism is not considered in 
today's OS standards (e.g., OSEK).

CABτR τW

100 Hz 350 Hz

Overload handling

• Admission control   (too drastic)

• Reducing precision of results

• Job skipping

• Rate adaptation

Overload conditions in periodic systems due to 
speed reduction can be avoided by:
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Reducing precision
In many applications, computation can be 
performed at different level of precision: the 
higher the precision, the longer the 
computation. Examples are:

• binary search algorithms

• image processing and computer graphics

• neural learning

Imprecise computation
In this model, each task ττττi (Ci, Di, wi) is 
divided in two portions:

• a mandatory part: ττττm
i (Mi, Di)

• an optional part: ττττo
i (Oi, Di)

Mi Oi

wi is an importance weight
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Imprecise computation
In this model, the workload can be reduced by 
aborting the optional part at any time:

Mi Oi

σi

error: εi =  Oi − σi average error: ∑
=

ε=ε
n

i
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GOAL: minimize the average error

Job skipping
Periodic load can also be reduced by skipping 
some jobs, once in a while.

Many systems tolerate skips, if they do not 
occur too often:

• multimedia systems (video reproduction)

• inertial systems (robots)

• monitoring systems (sporadic data loss)
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Example
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The system is overloaded, but tasks can be 
schedulable if τ1 skips one instance every 3:

τ1
skip skip skip

τ2

Rate adaptation

• The idea is to reduce the load by increasing 
deadlines and/or periods.

• Each task must specify a range of values for 
its period.

• Periods are increased during overloads, and 
reduced when the overload is over.
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Example
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Load adaptation

13.1
30
5

70
15

40
10

20
10 =+++=pU

99.0
30
5

80
15

50
10

23
10 =+++=pU

If τ4 arrives with: C4 = 5, T4 = 30 the system is not 
schedulable any more:

However, there exists a feasible schedule within the 
specified ranges:
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Finding feasible rates
• There is a huge number of possible rate 

configurations giving a feasible schedule.

• How to find one efficiently?

THE  ELASTIC  TASK  MODEL

Elastic task model
• Tasks’ utilizations are treated as elastic 

springs and can be changed by period 
variations:

• The resistance of a task to a period variation 
is controlled by an elastic coefficient Ei:
⇒ the greater Ei the greater the elasticity
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Compression algorithm
During overloads, utilizations must be 
compressed to bring the load below one.

τ1 τ2 τ3 τ4

1 Up

1 Up

τ1 τ2 τ3 τ4

Elastic task model
• Once new utilizations are computed, we can 

derive periods OR computation times
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Conclusions
• To really exploit voltage variable processors, 

applications should be scalable
(i.e., performance ∝ speed)

• Scalable applications can be developed if:
• tasks are fully preemptive;

• communication is non blocking (CABs);

• overloads can be efficiently handled (e.g. elastic).


