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the writer’s buffer is periodic

the bus is periodic

the reader’s buffer is periodic

values are sustained in writer/bus/reader
clocks are not physically synchronized

a leightweight, flexible architecture
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LT TA bus can lose or duplicate data,

but boundedly so

This is acceptable for distributed low-level
sampled-data control, since control design
methods are robust enough to accomodate
for this, thanks to continuity and stability

of the closed-loop system.

But this may be a problem to implement
distributed discrete control of operating modes,

or protection control.
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A protocol on the top of LTTA
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when encapsulated by this protocol, the medium be-
haves like a point-to-point network of FIFO chan-
nels: enough to apply the Benveniste-Caillaud tech-
nique for distributed implementation of synchronous
programs
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behaviour of the protocol
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as a bundle of FIFO channels,
with variable but bounded delay
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how to prove
the theorem?

by “ brainual ” proof (paper)

extends to almost periodic clocks (robustness)

(almost) automatically

by formal analysis of a distributed asynchronous

system using synchronous languages!

24



Principle of the automatic proofs

@\WU [L\@

@ i

< >

25



Principle of the automatic proofs

@\ &

synch synch
prog prog
synchronous program >

how to abstract the metric condition
[w > b] A [{%J > 7] into a logical one ?

26



Principle of the automatic proofs

@\ &

synch synch
prog prog
synchronous program >

how to abstract the metric condition
[w > b] A [{%J > 7] into a logical one?

[w>b] : never two ¢V between two tP
[|[%] > 7] : more difficult, but feasible
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The Lustre proof

const n = 3; — the input is a bit stream of width 3

node writer(x : bool"n) returns (xw: bool”n; bw: bool);
let

bw = true — pre not bw;

XW = X;
tel

const init = false"n;

node reader(x: bool"n; b: bool) returns (cro: bool; xr: bool"n);
let
cro = not (b = (false — pre b));
xr = if cro then x
else (init — pre xr);
tel

node bus(xw: bool"n; bw: bool) returns (xr: bool"n; br: bool);
let

xr, br = (xw, bw);
tel

node faster(cb, cw: bool) returns (prop: bool);
var w_before_b: bool;
let

w_before_b = if cw then true

else if cb then false
else (false — pre w_before_b);

— tells that there is an unmatched cw

prop = not (cw and (false — pre w_before_b));
— this node implements (77)
tel

node firstafter(cb, cw: bool) returns (cbw: bool);
var waiting: bool;
let

cbw = cb and (false — pre waiting) ;

waiting = if cw then true

else if cbw then false
else (false — pre waiting);

— this node implements (77)
tel

node vecteq(xw: bool"n; xr: bool"n) returns (prop: bool);
var aux: bool” (n+1);
let
aux[0] = true;
aux[l..n] = aux[0..n-1] and (xr = xw);
prop = aux[n];
tel

node compare(cw: bool; xw: bool”n; xr: bool"n) returns (prop: bool);
var equal: bool; last: bool "n; unmatched: bool;
let
last = if equal then xw else (init — pre last);
— stores the value to be matched
equal = vecteq(xr, (init — pre last));
— tells whether the value to be matched is actually matched
unmatched = if cw and not (true — pre equal) then true
else if equal then false
else false — pre unmatched;
— tells that there are two values waiting for match
prop = not(cw and (false — pre unmatched));

— a new value should not arrive while two values are waiting for match

tel

node verif(cw, cb, cr: bool; (x: bool"n) when cw)
returns (prop: bool; xw, xr, xro: bool"n; bw, br: bool; cro: bool );
let
xw, bw = if cw then current writer(x)
else ((init, false) — pre(xw, bw));
xr, br = if ¢b then current bus((xw, bw) when cb)
else ((init, false) — pre(xr, br));
cro, xro =if cr then current reader((xr, br) when cr)
else ((false, init) — pre(cro, xro));

prop = compare(cw, Xw, XIo);

assert faster(cb, cw) and faster(cr, firstafter(cb, cw));
— these assertions implement (?7) and (?7)
assert #(cw, cb, cr);
— s0 as not to get bored by simultaneous clocks
tel

(*
moucherotte% lesar albert2.lus verif
~Pollux Version 2.0

TRUE PROPERTY

moucherotte%

)



The Signal proof

process protocol = (? boolean xw; event cw, cb, cr ! boolean xr , inv)

(| (xb, bb, sbw) := bus (xw, writer(xw,cw), cb) % writer + bus %
| (xr, br, sbb) :=reader (xb, bb, cr) % reader %
| cb = sbw default cb % condition (?7) %
| er = (when switched(sbb)) default cr % condition (77) %
| xok := fifo_2 (xw) % fifo_2 satisfies (17) %
| inv := equal (xok, xr) % tests if xok=xr %

|) where boolean bw, xb, bb, sbw, sbb, br, xok;

process writer = (? boolean xw; event cw ! boolean bw)
(| bw= xw=cw
| bw := not (bw$1 init true)
BE % bw: boolean flag %
process bus = (? boolean xw, bw; event cb ! boolean xb, bb, sbw)
(I (xb, bb, sbw) := buffer (xw, bw, cb) |);
process reader = (? boolean xb, bb; event cr ! boolean xr, br, sbb)
(I (yr, br, sbb) := buffer (xb, bb, cr) | xr := yr when switched (br) |)
where boolean yr; end;

process switched = (? boolean b ! boolean c)
(| zb := b$1 init true | ¢ := (b and not zb) or (not b and zb) |)
where boolean zb; end;

process buffer = (? boolean x, b ; event ¢ ! boolean bx, bb, sb)
(| (sx, sb) := shift_2 (x, b) | (bx, bb) := current_2 (sx, sb, c) |)
where boolean sx; end;

process shift_2 = (? boolean x, b ! boolean sx, sb) % see shift_1 %
(| (sx, sb) := current_2 (x, b, "sb) | interleave (x, sx) |);
process current_2 = (? boolean wx, wb; event ¢ ! boolean rx, rb)
(| rx := (wx cell ¢ init false) when ¢
| rb := (wb cell c init true) when c |);
process interleave = (? boolean x, sx ! )
(| x= when b | sx "= when not b | b := not (b$1 init false) |)
where boolean b; end; % x and sx interleave %

% see current_1 %

process equal = (? boolean y, z ! boolean inv)
(| i:= (y and z) or (not y and not z) default inv
| inv :=1i $1 init true
|); where boolean i; end; % tests if y=z %
process fifo_2 = (? boolean x ! boolean xok )
(| xok := shift_1(shift_1(x)) |);
process shift_1 = (? boolean x ! boolean sx)
(| sx := current_1 (x, "sx) | interleave (x, sx) |);
process current_1 = (? boolean wx; event ¢ ! boolean rx)
(| rx := (wx cell ¢ init false) when ¢ |);

% x,sx satisfy (?7) %

end;

% switched(br) validates xr %

% c=true when b alternates %

% delays, sustains, filters %

% current triggered by ¢ %

Sigali:

set_reorder(1);

read(”protocol.z3z”);

read(” Creat_SDP.z3z”);

read(” Verif_Determ.z3z”);
POSSIBLE(B_False(S,inv)); — resultat False
Always(B_True(S,inv)); — resultat True
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CONCLUSION

LTTA architectures (such as in use, e.g.,
at Airbus) can be made GALS-like

this allows for the distributed deployment

of synchronous programs

this is probably a particular case of a more
general theory of “ correct distributed de-

ployments ', currently under study
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