A Protocol for
Loosely Time-Triggered
Architectures — LT TA

Albert Benveniste(l), Paul Caspi(?,
Paul Le Guernic(l), Hervé Marchand(1),

Jean-Pierre Talpin(1), Stavros Tripakis(?)

(1) Irisa/Inria, Rennes , (2) Verimag, Grenoble

Emsoft’2002

Contents

. what, where, why
problem

. solution

. analysis

LTTA: -

-bw[\)H

LTTA bus (cf. Airbus)

© (2
< © >

the writer’s buffer is periodic
the bus is periodic
the reader’s buffer is periodic

LTTA bus (cf. Airbus)

© (2
< © >

the writer’s buffer is periodic

the bus is periodic

the reader’s buffer is periodic

values are sustained in writer/bus/reader
clocks are not physically synchronized

LTTA bus (cf. Airbus)

© (2
< © >

the writer’s buffer is periodic

the bus is periodic

the reader’s buffer is periodic

values are sustained in writer/bus/reader
clocks are not physically synchronized

a leightweight, flexible architecture

Contents

. what, where, why
problem

. solution

. analysis

LTTA: -

-bw[\ﬂ-l

transmitting a signal over LT TA

H Input

transmitting a signal over LT TA

inplut
? bus

transmitting a signal over LT TA

el []] s

transmitting a signal over LT TA

H Input

m

it can lose or duplicate data,

but boundedly so

10

LT TA bus can lose or duplicate data,

but boundedly so

11

LT TA bus can lose or duplicate data,

but boundedly so

This is acceptable for distributed low-level
sampled-data control, since control design
methods are robust enough to accomodate
for this, thanks to continuity and stability
of the closed-loop system.

12

LT TA bus can lose or duplicate data,

but boundedly so

This is acceptable for distributed low-level
sampled-data control, since control design
methods are robust enough to accomodate
for this, thanks to continuity and stability

of the closed-loop system.

But this may be a problem to implement
distributed discrete control of operating modes,

or protection control.
13

LTTA: -

Contents

-boo[\M-l

problem

. solution
. analysis

. what, where, why

14

A protocol on the top of LTTA

encode decode

@ &

sustain @ fetch

15

A protocol on the top of LTTA

o—-| fifo
Rl

encode | : : ' decode
PN T__ T /I__I_“ '4"‘
: <) /I f vy s
=3 \\ I’ II \\ -3
N A
PN T i e bo---o- .
“ sustain ‘s-g fetch 2

N R R R R R R R R R R R I R B R R R EOEEEEwy

when encapsulated by this protocol, the medium be-
haves like a point-to-point network of FIFO chan-
nels: enough to apply the Benveniste-Caillaud tech-
nique for distributed implementation of synchronous
programs

16

behaviour of the protocol

H Input

InERnNnNn rllllll rllllll

Ll Innnn
boolean flag

Lllllll Lllllll

17

behaviour of the protocol

R

PR

R

18

behaviour of the protocol

P PR
T

rlll rlllwllll

w>b and {%J >

.
b

19

behaviour of the protocol

H Input

ingnnnn rllllll rllllll

Ll Innnn
boolean flag

THEOREM: the protocol behaves
as a bundle of FIFO channels,
with variable but bounded delay

_ T

lllllllIIL.l.rllllllllLll..l..lrlllmllll

Lllllll Lllllll

w>b and FJ > L
b b

20

LTTA: -

Contents

-hw[\M-l

problem

. solution
. analysis

. what, where, why

21

how to prove
the theorem?

22

how to prove
the theorem?

1. by “ brainual ” proof (paper)

extends to almost periodic clocks (robustness)

23

how to prove
the theorem?

by “ brainual ” proof (paper)

extends to almost periodic clocks (robustness)

(almost) automatically

by formal analysis of a distributed asynchronous

system using synchronous languages!

24

Principle of the automatic proofs

@\WU [L\@

@ i

< >

25

Principle of the automatic proofs

@\ &

synch synch
prog prog
synchronous program >

how to abstract the metric condition
[w > b] A [{%J > 7] into a logical one ?

26

Principle of the automatic proofs

@\ &

synch synch
prog prog
synchronous program >

how to abstract the metric condition
[w > b] A [{%J > 7] into a logical one?

[w>b] : never two ¢V between two tP
[|[%] > 7] : more difficult, but feasible

27

Principle of the automatic proofs

@ \ ¢ in Lustre @
3 boolean
synch clocks synch
prog prog

RZ

< synchronous program >

28

Principle of the automatic proofs

@ \ ¢ 3 irir:jesgggzlent @

synch clocks synch
prog prog

RZ

< synchronous program >

29

30

The Lustre proof

const n = 3; — the input is a bit stream of width 3

node writer(x : bool"n) returns (xw: bool”n; bw: bool);
let

bw = true — pre not bw;

XW = X;
tel

const init = false"n;

node reader(x: bool"n; b: bool) returns (cro: bool; xr: bool"n);
let
cro = not (b = (false — pre b));
xr = if cro then x
else (init — pre xr);
tel

node bus(xw: bool"n; bw: bool) returns (xr: bool"n; br: bool);
let

xr, br = (xw, bw);
tel

node faster(cb, cw: bool) returns (prop: bool);
var w_before_b: bool;
let

w_before_b = if cw then true

else if cb then false
else (false — pre w_before_b);

— tells that there is an unmatched cw

prop = not (cw and (false — pre w_before_b));
— this node implements (77)
tel

node firstafter(cb, cw: bool) returns (cbw: bool);
var waiting: bool;
let

cbw = cb and (false — pre waiting) ;

waiting = if cw then true

else if cbw then false
else (false — pre waiting);

— this node implements (77)
tel

node vecteq(xw: bool"n; xr: bool"n) returns (prop: bool);
var aux: bool” (n+1);
let
aux[0] = true;
aux[l..n] = aux[0..n-1] and (xr = xw);
prop = aux[n];
tel

node compare(cw: bool; xw: bool”n; xr: bool"n) returns (prop: bool);
var equal: bool; last: bool "n; unmatched: bool;
let
last = if equal then xw else (init — pre last);
— stores the value to be matched
equal = vecteq(xr, (init — pre last));
— tells whether the value to be matched is actually matched
unmatched = if cw and not (true — pre equal) then true
else if equal then false
else false — pre unmatched;
— tells that there are two values waiting for match
prop = not(cw and (false — pre unmatched));

— a new value should not arrive while two values are waiting for match

tel

node verif(cw, cb, cr: bool; (x: bool"n) when cw)
returns (prop: bool; xw, xr, xro: bool"n; bw, br: bool; cro: bool);
let
xw, bw = if cw then current writer(x)
else ((init, false) — pre(xw, bw));
xr, br = if ¢b then current bus((xw, bw) when cb)
else ((init, false) — pre(xr, br));
cro, xro =if cr then current reader((xr, br) when cr)
else ((false, init) — pre(cro, xro));

prop = compare(cw, Xw, XIo);

assert faster(cb, cw) and faster(cr, firstafter(cb, cw));
— these assertions implement (?7) and (?7)
assert #(cw, cb, cr);
— s0 as not to get bored by simultaneous clocks
tel

(*
moucherotte% lesar albert2.lus verif
~Pollux Version 2.0

TRUE PROPERTY

moucherotte%

)

The Signal proof

process protocol = (? boolean xw; event cw, cb, cr ! boolean xr , inv)

(| (xb, bb, sbw) := bus (xw, writer(xw,cw), cb) % writer + bus %
| (xr, br, sbb) :=reader (xb, bb, cr) % reader %
| cb = sbw default cb % condition (?7) %
| er = (when switched(sbb)) default cr % condition (77) %
| xok := fifo_2 (xw) % fifo_2 satisfies (17) %
| inv := equal (xok, xr) % tests if xok=xr %

|) where boolean bw, xb, bb, sbw, sbb, br, xok;

process writer = (? boolean xw; event cw ! boolean bw)
(| bw= xw=cw
| bw := not (bw$1 init true)
BE % bw: boolean flag %
process bus = (? boolean xw, bw; event cb ! boolean xb, bb, sbw)
(I (xb, bb, sbw) := buffer (xw, bw, cb) |);
process reader = (? boolean xb, bb; event cr ! boolean xr, br, sbb)
(I (yr, br, sbb) := buffer (xb, bb, cr) | xr := yr when switched (br) |)
where boolean yr; end;

process switched = (? boolean b ! boolean c)
(| zb := b$1 init true | ¢ := (b and not zb) or (not b and zb) |)
where boolean zb; end;

process buffer = (? boolean x, b ; event ¢ ! boolean bx, bb, sb)
(| (sx, sb) := shift_2 (x, b) | (bx, bb) := current_2 (sx, sb, c) |)
where boolean sx; end;

process shift_2 = (? boolean x, b ! boolean sx, sb) % see shift_1 %
(| (sx, sb) := current_2 (x, b, "sb) | interleave (x, sx) |);
process current_2 = (? boolean wx, wb; event ¢ ! boolean rx, rb)
(| rx := (wx cell ¢ init false) when ¢
| rb := (wb cell c init true) when c |);
process interleave = (? boolean x, sx !)
(| x= when b | sx "= when not b | b := not (b$1 init false) |)
where boolean b; end; % x and sx interleave %

% see current_1 %

process equal = (? boolean y, z ! boolean inv)
(| i:= (y and z) or (not y and not z) default inv
| inv :=1i $1 init true
|); where boolean i; end; % tests if y=z %
process fifo_2 = (? boolean x ! boolean xok)
(| xok := shift_1(shift_1(x)) |);
process shift_1 = (? boolean x ! boolean sx)
(| sx := current_1 (x, "sx) | interleave (x, sx) |);
process current_1 = (? boolean wx; event ¢ ! boolean rx)
(| rx := (wx cell ¢ init false) when ¢ |);

% x,sx satisfy (?7) %

end;

% switched(br) validates xr %

% c=true when b alternates %

% delays, sustains, filters %

% current triggered by ¢ %

Sigali:

set_reorder(1);

read(”protocol.z3z”);

read(” Creat_SDP.z3z”);

read(” Verif_Determ.z3z”);
POSSIBLE(B_False(S,inv)); — resultat False
Always(B_True(S,inv)); — resultat True

31

CONCLUSION

LTTA architectures (such as in use, e.g.,
at Airbus) can be made GALS-like

this allows for the distributed deployment

of synchronous programs

this is probably a particular case of a more
general theory of “ correct distributed de-

ployments ', currently under study

32

